The 0-1 Knapsack problem with a single continuous variable
نویسندگان
چکیده
Constraints arising in practice often contain many 0-1 variables and one or a small number of continuous variables. Existing knapsack separation routines cannot be used on such constraints. Here we study such constraint sets, and derive valid inequalities that can be used as cuts for such sets, as well for more general mixed 0-1 constraints. Specifically we investigate the polyhedral structure of the knapsack problem with a single continuous variable, called the continuous 0-1 knapsack problem. First different classes of facet-defining inequalities are derived based on projection and lifting. The order of lifting, particularly of the continuous variable, plays an important role. Secondly we show that the flow cover inequalities derived for the single node flow set, consisting of arc flows into and out of a single node with binary variable lower and upper bounds on each arc, can be obtained from valid inequalities for the continuous 0-1 knapsack problem. Thus the separation heuristic we derive for continuous knapsack sets can also be used to derive cuts for more general mixed 0-1 constraints. Initial computational results on a variety of problems are presented.
منابع مشابه
The continuous knapsack set
We study the convex hull of the continuous knapsack set which consists of a single inequality constraint with n non-negative integer andm non-negative bounded continuous variables. When n = 1, this set is a slight generalization of the single arc flow set studied by Magnanti, Mirchandani, and Vachani (1993). We first show that in any facet-defining inequality, the number of distinct non-zero co...
متن کاملDynamic knapsack sets and capacitated lot-sizing
A dynamic knapsack set is a natural generalization of the 0-1 knapsack set with a continuous variable studied recently. For dynamic knapsack sets a large family of facet-defining inequalities, called dynamic knapsack inequalities, are derived by fixing variables to one and then lifting. Surprisingly such inequalities have the simultaneous lifting property, and for small instances provide a sign...
متن کاملContinuous knapsack sets with divisible capacities Laurence
We study two continuous knapsack sets Y! and Y" with n integer, one unbounded continuous and m bounded continuous variables in either ! or " form. When the coefficients of the integer variables are integer and divisible, we show in both cases that the convex hull is the intersection of the bound constraints and 2m polyhedra arising from a continuous knapsack set with a single unbounded continuo...
متن کاملOn the capacitated lot-sizing and continuous 0-1 knapsack polyhedra
We consider the single item capacitated lot–sizing problem, a well-known production planning model that often arises in practical applications, and derive new classes of valid inequalities for it. We first derive new, easily computable valid inequalities for the continuous 0–1 knapsack problem, which has been introduced recently and has been shown to provide a useful relaxation of mixed 0-1 int...
متن کاملAn Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem
A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 85 شماره
صفحات -
تاریخ انتشار 1999